
iTrace: Eye Tracking Infrastructure for Development
Environments

Drew T. Guarnera
Kent State University

Department of Computer Science
Kent, Ohio, USA

dguarner@kent.edu

Corey A. Bryant
Kent State University

Department of Computer Science
Kent, Ohio, USA

cbryan20@kent.edu

Ashwin Mishra
Youngstown State University

Department of CSIS
Youngstown, Ohio, USA

amishra01@student.ysu.edu

Jonathan I. Maletic
Kent State University

Department of Computer Science
Kent, Ohio, USA
jmaletic@kent.edu

Bonita Sharif
Youngstown State University

Department of CSIS
Youngstown, Ohio, USA

bsharif@ysu.edu

ABSTRACT
The paper presents iTrace, an eye tracking infrastructure, that en-
ables eye tracking in development environments such as Visual
Studio and Eclipse. Software developers work with software that is
comprised of numerous source code files. This requires frequent
switching between project artifacts during program understanding
or debugging activities. Additionally, the amount of content con-
tained within each artifact can be quite large and require scrolling
or navigation of the content. Current approaches to eye tracking
are meant for fixed stimuli and struggle to capture context during
these activities. iTrace overcomes these limitations allowing devel-
opers to work in realistic settings during an eye tracking study.
The iTrace architecture is presented along with several use cases of
where it can be used by researchers. A short video demonstration
is available at https://youtu.be/AmrLWgw4OEs

CCS CONCEPTS
• Human-centered computing;

KEYWORDS
eye tracking infrastructure, integrated development environments

ACM Reference Format:
Drew T. Guarnera, Corey A. Bryant, Ashwin Mishra, Jonathan I. Maletic,
and Bonita Sharif. 2018. iTrace: Eye Tracking Infrastructure for Development
Environments. In ETRA ’18: 2018 Symposium on Eye Tracking Research and
Applications, June 14–17, 2018, Warsaw, Poland. ACM, New York, NY, USA,
Article 4, 3 pages. https://doi.org/10.1145/3204493.3208343

1 INTRODUCTION
Eye trackers are a critical research tool in understanding how soft-
ware developers comprehend source code and other visual stimuli.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ETRA ’18, June 14–17, 2018, Warsaw, Poland
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5706-7/18/06.
https://doi.org/10.1145/3204493.3208343

The software engineering community has been conducting stud-
ies with biometric devices including eye trackers [Obaidellah et al.
2018; Sharafi et al. 2015] to understand how developers read and
understand software artifacts such as source code. An eye tracker
gives researchers a unique view into thought processes otherwise
not observed. Software developers spend the vast majority of their
development time performing program comprehension activities
[Minelli et al. 2015]. Current hardware and software offered by eye
tracking vendors support fixed stimuli with tedious post process-
ing to map eye gaze to areas of interest (AOIs). The tedious post
processing even on simple fixed stimuli is clearly inadequate for
software artifacts such as source code. Software developers not only
work with multiple source code files but each of these files typically
is comprised of thousands of lines of code. They constantly flip
through multiple files while reading and debugging code. Since
source code files are really large, we cannot feasibly draw AOIs
around each element to map gaze data to those regions. In addition,
source code is both semantically and syntactically rich and struc-
tured different from natural language text [Busjahn et al. 2015]. To
accurately capture the context of what developers are looking at,
an eye tracking infrastructure is needed that can handle dynamic
screen actions such as file switching, code folding, and content
scrolling.

The iTrace infrastructure is a novel solution that seeks to solve
the above mentioned problem by integrating eye tracking into
developer work environments to support conducting large-scale eye
tracking studies. iTrace is extensible and customizable to support
gaze data on multiple software artifacts such as text files, html
documents, and source code to name a few. After a quick calibration,
iTrace runs uninterrupted in the background within the developer
environment, recording developer eye movements while they are
working. These gazes will be automatically mapped to specific code
elements via a post processing module. For more information, visit
the iTrace website at http://www.i-trace.org.

2 ARCHITECTURE AND DESIGN
The architecture for iTrace (significantly extended from an ear-
lier prototype [Shaffer et al. 2015]) uses a central core application
dedicated to setting up a study session and interacting with any
attached eye trackers (See Figure 1). The core is responsible for

https://youtu.be/AmrLWgw4OEs
https://doi.org/10.1145/3204493.3208343
https://doi.org/10.1145/3204493.3208343
http://www.i-trace.org


ETRA ’18, June 14–17, 2018, Warsaw, Poland Guarnera et al.

interfacing with the eye tracker, calibration, session configuration,
and broadcasting gaze points to plugins. Plugins are developed for
specific development environments and communicate with the core
to receive gaze points along with bookkeeping metadata. When
a session is finished the core and plugin will both produce a set
of recorded data about the study in XML format. The response
records are joined by the session time field in each gaze response
record. The plugins are responsible for recording line and column
information that map the eye gaze to text or interface elements
within the integrated development environment (IDE) and recorded
during the study. iTrace is designed with the goal of supporting
additional eye trackers and plugins in the future. Feature parity
will be maintained between plugins.

Instead of using real-time AST information derived from the IDE,
a post processing module maps the line and column information
saved by plugins to syntactic elements in source code via the srcML
format [Collard et al. 2011, 2013; Collard and Maletic 2016]. This
occurs as part of a post processing phase where source code is con-
verted to the srcML format and together with gaze data is mapped
to semantically meaningful elements via an automated tool chain.
iTracemaps elements down to the token being viewed. For example,
in the declaration float totalCost; we get eye gaze mapped on
the data type float and the identifier totalCost as separate enti-
ties. Besides getting tokens mapped automatically, srcML is also able
to give us information about the type of syntactic element (method
call, function call among many others). This makes is simple for
a researcher to query the final generated gaze files to ask specific
questions about developer behavior.

Finally, we have the option of running various fixation filters to
generate fixations from the combined raw gaze files tagged with
AST information. The final generated data can then be used towards
some functional goal such as determining navigation behavior.

3 USE CASES
We envision iTrace helping researchers, practitioners, and educators.
We present a few of the many use cases [Sharif et al. 2016] below.

Program Comprehension. iTrace can map gaze data to both the
content of source code at a syntactic level, and development envi-
ronment views. This can improve understanding about what source
code elements help facilitate program comprehension and what
environment presentations are most often used. The information
can lead to identifying areas for code refactorings or enhancing
tool support to assist developers with the construction of mental
models [Altmann 2001; Ko et al. 2006; Soloway and Ehrlich 1984].
iTrace was successfully used for the purpose of determining the
types of elements developers look at while fixing bugs [Kevic et al.
2017, 2015]. They showed that eye movement data is richer and
more detailed than interaction data. Clark et al. developed a tool to
visualize the corresponding gaze data [Clark and Sharif 2017].

Software Traceability. iTrace supports context switching between
multiple source code artifacts allowing for gaze data to help identify
related source code elements. With support for both IDEs and web
browsers, artifacts can be bug reports, documentation, etc. iTrace
was used in two studies on traceability [Sharif et al. 2017; Walters
et al. 2014] where an algorithm was developed to discover links

Figure 1: Overview of the iTrace architecture

based on elements looked at. They showed eye gaze to be a feasible
method to discover traceability links, in particular, the hidden links
that are not easily generated from information retrieval systems.

Interviews. iTrace can be used by interviewers to see how their
candidates perform at job interviews. Imagine a scenario where the
interviewer gives the candidate a large open source system with
a bug to fix. Using iTrace, the interviewer will be able to see via
eye gaze, the strategies the candidate used during problem solving.
Perhaps the process to solve the problem is more important than
the final answer. Educators can benefit in similar ways where they
learn how students read and understand code.

Expertise Prediction. Analysis of how developers interact and
read code may provide insight into a developer’s level of experience.
With future support planned for tracking source code editing during
a study, this has the potential to provide even more insight into
skill level.

4 CONCLUSIONS AND FUTUREWORK
The paper presents a novel infrastructure that allows eye tracking
to be used in a dynamic environment that closely resembles real
world development. A set of utility tools will be developed as part
of future work that tie into the iTrace infrastructure. It will be
extensible enough so others can contribute to this tool set. The
goal is to support other eye tracking researchers, developers, and
educators in learning more about developer gaze patterns.

ACKNOWLEDGMENTS
This work has been funded in part by the National Science Founda-
tion under Grant Numbers CCF 1553573 and CNS 17-30307/30181.



iTrace: Eye Tracking Infrastructure for Development Environments ETRA ’18, June 14–17, 2018, Warsaw, Poland

REFERENCES
Erik M. Altmann. 2001. Near-term memory in programming: a simulation-based

analysis. International Journal of Human Computer Studies 54, 2 (2001), 189–210.
Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Paterson,

Carsten Schulte, Bonita Sharif, and Sascha Tamm. 2015. Eye Movements in Code
Reading: Relaxing the Linear Order. In Proceedings of 22th International Conference
on Program Comprehension (ICPC ’15).

Benjamin Clark and Bonita Sharif. 2017. iTraceVis: Visualizing Eye Movement Data
Within Eclipse. In IEEE Working Conference on Software Visualization, VISSOFT 2017,
Shanghai, China, September 18-19, 2017. 22–32. https://doi.org/10.1109/VISSOFT.
2017.30

Michael L. Collard, Michael John Decker, and Jonathan I. Maletic. 2011. Lightweight
Transformation and Fact Extraction with the srcML Toolkit. In 11th IEEE Working
Conference on Source Code Analysis and Manipulation, SCAM 2011, Williamsburg,
VA, USA, September 25-26, 2011. 173–184. https://doi.org/10.1109/SCAM.2011.19

Michael L. Collard, Michael John Decker, and Jonathan I. Maletic. 2013. srcML: An
Infrastructure for the Exploration, Analysis, and Manipulation of Source Code: A
Tool Demonstration. In 2013 IEEE International Conference on Software Maintenance,
Eindhoven, The Netherlands, September 22-28, 2013. 516–519. https://doi.org/10.
1109/ICSM.2013.85

Michael L. Collard and Jonathan I. Maletic. 2016. srcML 1.0: Explore, Analyze,
and Manipulate Source Code. In 2016 IEEE International Conference on Software
Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7, 2016. 649.
https://doi.org/10.1109/ICSME.2016.36

Katja Kevic, Braden Walters, Timothy Shaffer, Bonita Sharif, David C. Shepherd, and
Thomas Fritz. 2017. Eye gaze and interaction contexts for change tasks - Ob-
servations and potential. Journal of Systems and Software 128 (2017), 252–266.
https://doi.org/10.1016/j.jss.2016.03.030

Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, Thomas Fritz,
and David C. Shepherd. 2015. Tracing software developers eyes and interactions
for change tasks. Proceedings of the 10th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (2015).

Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. 2006. An Ex-
ploratory Study of How Developers Seek, Relate, and Collect Relevant Information
during Software Maintenance Tasks. IEEE Transactions on Software Engineering 32
(2006), 971–987. https://doi.org/10.1109/TSE.2006.116

Roberto Minelli, Andrea Mocci, and Michele Lanza. 2015. I know what you did last
summer: an investigation of how developers spend their time. In Proceedings of
the 2015 IEEE 23rd International Conference on Program Comprehension, ICPC 2015,
Florence/Firenze, Italy, May 16-24, 2015. 25–35. https://doi.org/10.1109/ICPC.2015.12

Unaizah Obaidellah, Mohammed Al Haek, and Peter C.-H. Cheng. 2018. A Survey on
the Usage of Eye-Tracking in Computer Programming. ACM Comput. Surv. 51, 1,
Article 5 (Jan. 2018), 58 pages. https://doi.org/10.1145/3145904

Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C. Müller, Michael
Falcone, and Bonita Sharif. 2015. iTrace: Enabling Eye Tracking on Software
Artifacts Within the IDE to Support Software Engineering Tasks. (2015), 954–957.
https://doi.org/10.1145/2786805.2803188

Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. 2015. A Systematic Litera-
ture Review on the Usage of Eye-tracking in Software Engineering. Information
and Software Technology (IST) (2015).

Bonita Sharif, Benjamin Clark, and Jonathan I. Maletic. 2016. Studying developer gaze
to empower software engineering research and practice. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2016, Seattle, WA, USA, November 13-18, 2016. 940–943. https://doi.org/10.1145/
2950290.2983988

Bonita Sharif, John Meinken, Timothy Shaffer, and Huzefa H. Kagdi. 2017. Eye move-
ments in software traceability link recovery. Empirical Software Engineering 22, 3
(2017), 1063–1102. https://doi.org/10.1007/s10664-016-9486-9

Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming Knowledge.
IEEE Trans. Software Eng. 10, 5 (1984), 595–609.

Braden Walters, Timothy Shaffer, Bonita Sharif, and Huzefa H. Kagdi. 2014. Captur-
ing software traceability links from developers’ eye gazes. In 22nd International
Conference on Program Comprehension, ICPC 2014, Hyderabad, India, June 2-3, 2014.
201–204. https://doi.org/10.1145/2597008.2597795

https://doi.org/10.1109/VISSOFT.2017.30
https://doi.org/10.1109/VISSOFT.2017.30
https://doi.org/10.1109/SCAM.2011.19
https://doi.org/10.1109/ICSM.2013.85
https://doi.org/10.1109/ICSM.2013.85
https://doi.org/10.1109/ICSME.2016.36
https://doi.org/10.1016/j.jss.2016.03.030
https://doi.org/10.1109/TSE.2006.116
https://doi.org/10.1109/ICPC.2015.12
https://doi.org/10.1145/3145904
https://doi.org/10.1145/2786805.2803188
https://doi.org/10.1145/2950290.2983988
https://doi.org/10.1145/2950290.2983988
https://doi.org/10.1007/s10664-016-9486-9
https://doi.org/10.1145/2597008.2597795

	Abstract
	1 Introduction
	2 Architecture and Design
	3 Use Cases
	4 Conclusions and Future Work
	Acknowledgments
	References

